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We investigate classical-quantum correspondence for the kicked Harper model for extremely small values of
the Planck constant. In the asymmetric case a pure quantum state shows a clear signature of classical
diffusive as well as superdiffusive transitions asymptotically independerit efowever, for the symmetric
case, thes independent behavior occurs only for the renormalized paranieteK/(24) with intriguing
features such as a sharp transition from integrable to nonintegrable transiertrdR, a series of transitions
at multiples of 7, and the periodicity of the transmission probability. We suggest that evein—a8, the
guantum dynamics is influenced by cantori and additional features emerge in their absence.
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Localized transport of a quantum system in the regimeexhibits intricately mixed nondiffusivéKAM regime) and
where the corresponding classical system exhibits determirdiffusive regions corresponding to global stochasticity. In
istic diffusive behavior is one of the most surprising aspectgontrast, in thesymmetric case KL, there are no KAM
of nonintegrable Hamiltonian systers]. However, the cor- barriers to global transport but a separatrix, and it is the
respondence principle requires some signatures of variousreakup of the separatrix that results in global diffusion. For
classical transitions such as the breakup of Kolmogorov, Arlarge values of the parameters, both the symmetric and the
nold, and MoserKAM) tori leading to diffusive transport asymmetric model exhibits mostly diffusive behavior with
and the emergence afcelerator modegAMs) resulting in - the exception of narrow windows in parameter space where
superdiffusive anomalous transport. In this paper, we dethe AMs give rise to superdiffusive transp@éi.
scribe quantum signatures of various classical transitions in The quantized system that is periodically kicked is de-
transport characteristics emphasizing the crossover effectxribed by the quasienergy states of the one step time evolu-
from large to small values of the effective Planck’s constantion operator, introducing an additional paramétanto the
f. As —0, the quantum system exhibiting localization in problem. However, one hopes to recoveindependent be-
one of the phase-space directions is foundet the effects  havior (asf—0) in order to establish quantum signatures of
of all classical transitions. However, in the absence of local¢lassical behavior. It is a well established fact that the RG
ized transport, the quantum system exhibits many surprisingpproach provides the most effective tool in distinguishing
features and appears to be insensitive to the classical dynarpallistic, diffusive and localized transport. Here we use re-
ics. cently developed3] dimer decimation approach to study

The problem of establishing classical-quantum correspontransport characteristics of the quasienergy states in the small
dence in quasiperiodic extended systems has proven to lelimit. The RG method is appliedi3] to the momentum
difficult due to numerical limitations in approachiig—0. lattice (p,,=%m) representation of the kicked modé!,8]

All previous studieqsee, e.g.[2]) addressing this question
have been limited td~1. Here we use the recently devel-

©

oped renormalization group(RG) approach[3] to study rzx B{"Um+r=0, )
guantum transport for extremely small values 7ofup to
~10% ~ where the coefficientB!" are
The kicked Harper moddHK,5,2] has emerged as an im-
portant model in quantum chaos literature. The system is Bm=J,(E)sir{fcos(mﬁ)—7rr/2— wl2]. (3)
given by the doubly periodic time-dependent Hamiltonian '
oc Here w is the quasienergy and=K/(2%) andL=L/(24)
H(t)=L cogp)+K cogq) E S(t—k). (1) are renormalized parametersThe tight-binding model
k=—o

(TBM) [Eq. (2)] effectively contributes only few terms as

Hereg, pis a canonically conjugate pair of variables, usually 3€Ssel's functions exhibit fast decay whe>|K|. There-
considered on a cylindgre (—x=,%), qe[0,2). fore, the TBM describes a Ia_ttlce model with a f|n|te_ra£ge of
The classical dynamics of the kicked Harper model isinteraction denoted as(b~K). In the limit of smallK, L,
determined by two parametefs and L. In the asymmetric o, the TBM reduces to the Harper equation wéthfi o [9].
case K#L), the phase space, for small values of paramWe will choosef: to be an irrational number with a golden
eters, is stratified with KAM tori, which inhibit the transport tail: #/(27)=1/(n+ o), whereo= (\5—1)/2) is fixed and
on a global scale. FoL>K, or K>L, these tori barriers # is varied by varying the integem,. This corresponds to
limit the transport alongp, or g, directions, respectively. As studying system sizeBl,, n=1,2,... determined from the
we show below, the two-dimension&D) parameter space Fibonacci equationN,.;=N,+N,_;, with Ng=1, N;
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FIG. 1. For ﬁXedK:OA-, the figure describes a series of break- FIG. 2. The diffusive regime in 2D parameter space. The un-
ups of KAM barriers resulting in transitions to diffusive transport shaded parttop) is in the regime of KAM barriers for momentum
Ba=1 (top). Middle and the bottom figures show the correspondingtransport with 3,=0. The corresponding quantum pléottom

plots of quantum localization leng#hfor n,= 200 andn,=32. The  wjth n,=300: In the unshaded part, the transport exponerg is
renormalization is carried out for system sizes increasing until the< — 10.

transmission probability becomes zero.

1. As demonstrated in the figure, a smlls crucial to see
=ny,, corresponding to thath successive rational approxi- signatures ofll classical transitions. We would like to point
mant of the irrational numbes. The RG methods can be out that our results are consistent with the relatién
used to study system sizes up to 100], which allows very = 1/2D/#2 [8]. However, near the peaksarrow windows in
largeny, and hence facilitates studying the semiclassical limitparameter space corresponding to the onset of classical tran-
of the kicked model with a precision that has never beersitions, the quantum transmission probabilify(N) ceases

achieved before, to the best of our knowledge. to look like a simple exponential-exp(—N/§) thus making
The transport characteristics of the quasienergy states atgiantitative comparison difficult.
studied by computing the transmission probabilitypn the An interesting aspect of the two-parameter kicked Harper

momentum lattice. This is achieved in two steps: first wemodel is that the boundary between the KAM and diffusive
decimate the lattice and then solve the scattering problem ophases appears to be fractal as seen in Fig. 2. This behavior
the renormalized latticd3]. The renormalization scheme is reminiscent of the kicked rotor problem where the kicking
makes the solution of the scattering problem for large latticepotential consists of two harmonifkl]. Although somewhat
of sizeN very efficient, as the dimer decimation reduces thesmeared, the quantum model exhibits similar behavior: the
size of thescattering regionFor a fixeds, we compute the boundary describes the transition to the enhancement of lo-
transmission probability (N) for various sizesN of the mo-  calization lengthé. It is remarkable that the quantum system
mentum lattice corresponding to a rational approximant of feels the presence of all classical transitions and the fact that
with  denominator N. The scaling exponent B unlike the kicked rotor model, there is a whole hierarchy of
=limy_. In T(N)/In N distinguishes extended, localized, and transitions in the Harper model, which makes this model an
critical states respectively, described B¢{N)—0,— —oo, important system in quantum chaos studies.
and theoscillatory functionB(N,,) of n[3]. For the exponen- An important feature of kicked systems with toroidal
tial localization, the quantitg=—[limy_..(1/N)InT(N)]"*  phase space is the AMs that are reguktable space-time
has been found to be closely related to the localization lengtktructures coexisting with the chaotic sea in phase space and
of the quasienergy eigenstate. are accompanied by a hierarchy of island chains inducing
In contrast to the kicked rotor model, the kicked Harperanomalous transpog.> 1. Figure 3 shows one such super-
model is found to exhibit a series of breakups and reformadiffusive parameter window whose origin is traced to a
tions of KAM barriers. These transitions, quantified by theperiod-8 AM. Once again, the quantum state: 0, although
exponentBq=lim._.. In{(p(t)—p(0)]*/Int, are signaled by localized, exhibits a very strong enhancement of localization
B changing from 0 to~1. In the quantum model, our de- length in the classically superdiffusive regime. It should be
tailed analysis for various values dfandL >K confirms the noted that in contrast to the diffusive peaks, superdiffusive
previously held view{7] that the quantum system remains spikes are in fact groups of many spikes exhibiting sensitive
localized in the classically diffusive regime. However, thedependence on the parameters and hence describe transport
classical transitions corresponding to diffusive transporin fractal phase space.
manifest in a huge enhancement of the localization length. It is rather surprising that a pure quantum state with
Results for an individual pure state=0 are shown in Fig. =0, which is an eigenstate for all parameter values, can ex-
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FIG. 3. For a fixedK=0.86 the figure shows classical anoma-
lous transport due to AM. In the corresponding quantum results, th
transmission probability was zero except at the crossesnfor

PHYSICAL REVIEW E 65 047204

w
o~

(@] HT||||||||||||||||||||1-HO 1"I‘IIII|IIII|IIIIIII

I

3

2
K/m

o
S

€ FIG. 4. Variations in3 characterizing the transmission probabil-
ity along the lineK=L in kicked Harper model fon,=10 000

=300 and the lattice sizBl=43289. More precisely, the crosses (top), n,=250 (middle), and n,=32 (bottom). The plateau folK

indicate points where localization length varies between 400 to 800,

/2 is the transport exponent for the Harper equation. Although

which is about a tenfold increase from the localization length in they,o exponens oscillates withN, all RG iterates show qualitatively

diffusive regime.

hibit such a clear signature of almost all the classical transi
tions. We would like to point out that we have only investi-
gated theL >K part of the parameter space whereas dualit
implies that analogous behavior will be seen korL in g
space.

In our earlier studieg3] for A~0O(1), wefound patches
of ballistic (localized regions forL>K (K>L) [3]. Nu-
merical studies for smaller values bfsuggest that the over-
all measure of the extenddtbcalized regimes forL>K
(K>L) approaches zero ds—0 [12].

We now discuss the symmetric Harper model wih

=L. Here the quasienergy states remain critical and henc

exhibit diffusive transport for all values of the kicking pa-
rameterK. As #—0 (see Fig. 4, the transmission exponent
becomesi independent provided we use the renormalize

parametet? instead of the bar&. The model exhibits trans-
mission characteristics of the Harper equation Kog /2.

Precisely aK = /2, the transport exponent begins to exhibit
an oscillatory behaviofwith frequency proportional td).

y

the same behavior.

bility of a series of enhancements of transporiat |/ /2.
The integerl is a kind of winding number that unfolde

(confined to the interval 0-+2. The fact thatk and notK
determines the thresholds for various transitions led to the
conjecture that singular scaling of the parameters may be
needed for classical-quantum correspondence. Furthermore,
it was suggested that the semiclassical transitions at mul-
tiples of 7 are the quantum manifestations of the superdiffu-
sive transitions due to period-1 and period-2 AMs, which
respectively occur at even and odd multiplesrofHowever,

e classical-quantum correspondence established in Figs.

—3 rules out the necessity of any type of scaling of the
parameters. It is possible that the transitions seen in the sym-

0metric case are purely quantum mechanical in nature and

may have their origin in resonances and/or topological
changes. We should mention that a possibility of some sud-
den changes at multiples af2 also emerged in our analysis

of the scattering problem. It turns out that the number of
independent propagating solutions of the scattering problem

As Opposed to classical meChaniCS, where infinitesimal per[g], i_e_, the dimension of th& matriX, increases by 1 a?l
turbation leads to chaotic regions whose size increases as the| /2 |=1,2,..., matching with the discontinuities of the

perturbation increases, the perturbation of such a quantu

be topological4]. It should be noted that the onset of oscil-
latory behavior is seen at higher odd multiplesm2, how-
ever, the behavior becomes prominent only at very siall

Another fascinating feature is that beyoKa- 7, the trans-
mission probability appears to be periodicKnwith period

Mansport exponens(K).
system causes no immediate change in the transport chara P ponené(K)

teristics. This suggests that the roots of these transitions may;

¢ The symmetric kicked Harper model is an interesting ex-

mple of a nonintegrable system where the classical as well
as the quantum transport is diffusive. It is in sharp contrast to
the asymmetric case where the classically diffusive behavior
corresponds to localized quantum transport. In view of this,
it is rather surprising that in the asymmetric case the quan-
tum system appears to respond ab the changes in the

7. Finally, the model exhibits a series of resonance-type tranelassical behavior, while in the symmetric case it remains

sitions precisely aK=1, | =1,2,..., characterized by a dis-
continuity in the transport exponent.
Recently, a semiclassical analy$is3] hinted at a possi-

insensitive to the variation in classical transport and instead
repeats its behavior at every multiple of The fact that the

transition thresholds are determined Eysupports the view
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that these transitions are quantum mechanical in nature withamical localization: we speculate that the dynamical local-
d harr peculate th y al loc
no classical analog. Finally, semiclassical transpott is- ization may be due to the cantori barriers. These are invariant
dependen{meaning that it depends o only through the quasiperiodic trajectories With_ infinite_ nu_mb_er of steps and
rescaled parameté) in the symmetric case and preliminary Provide an effective nonanalytic quasiperiodic potential. The
studies show that for the asymmetric case,ftltependence _po_sgbﬂny of Iocallzathn in a quasiperiodic potentla[ with
exists only in the localization length while the ﬂuctuationsf{g@ﬁ)ﬁ;ﬁ’j‘eatigteti]ned;igﬁz?%dfgfﬁgggﬁgéz\éiVéﬂ:'?c:'lézmori
2gogttthh§ (saéfnog?)?tcl)aulrerg\;ill?é)iqzrebaeg?gg?e%pﬁ]ngingrivr\r/]eentSUQQGStS that these barriers continue to inhibit transport even
aspthe symmetric kicked Harpes/ model also der)cribes Ash 0 irrespectively of the flux through the holes in can-

Kicked i del. which h ) tal i fori. This scenario not only explains dynamical localization
(cked oscillator model, which has an experimental realizas, the kicked rotor and Harper modeffor L>K), but also
tion in atom optics.

- L accounts for ballistic transport in the kicked Harper model
Inability of the quantum system to delocalize in the clas-or K~ | . Furthermore, we would like to attribute the fea-

sically diffusive regime and mimic the classical behavior foryres of the symmetric case to the absence of cantori, and
arbitrary small values of: as confirmed by RG analysis, conjecture that classically chaotic systems without KAM or

remains an open frontier. Earlier studies have suggestethniori could exhibit intriguing features such as those shown
phase randomizatiofv] due to classical chaos as a mecha-j, rig 4. We hope that further studies will put our specula-
nism for quantum dynamical localization. The fact that theyje views on a solid footing.

kicked Harper model can exhibit localized, ballistic, and dif-

fusive transport irrespective of the fact that the correspond- The research of I.I.S. is supported by the National Science
ing classical system is chaotic challenges the phase randorRoundation, Grant No. DMR 0072813. T.P. acknowledges
ization as the underlying mechanism for localization. Herethe Ministry of Education, Science and Sport of Slovenia for
we would like to propose an alternative mechanism of dy-financial support.
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